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ABSTRACT

Treatment wetlands are ecological systems thatmgaeered to improve polluted water quality
through macrophyte, soil, and microbial remediataord are used commonly for urban and
agricultural runoff treatment. However, constructegtlands used for marine aquaculture
effluent treatments are understudied when compaoedheir freshwater counterpart. We
compared the nutrient retention and the microb@hmunities of two types of constructed
wetland mesocosms, a vertical-flow treatment wetl&WFTW) and floating treatment wetland
(FTW) in subtropical south Florida. To enhance ieuatr retention efficiency, we implemented
biodegradable plastic (polycaprolactone), as arereat carbon source and monitored the
performance of VFTW and FTW for the treatment of rima aquaculture effluent.
Polycaprolactone surface were covered by varioasayacterial genera includiri@scillatoria,
Leptolyngbya, Brasilonema, and Trichormus and some plastic-degrading bacteria such as
Pseudomonas. The presence of a biodegradable plastic in FTWpraved the overall
performance of nitrogen removal (nitrite plus rtg)aby 14% through denitrification. The pattern
of nutrient removal between two treatment wetlarebotosms were significantly different<p
0.01), with over 87-91% retention of total nitrogarVFTW and no retention in FTW, the latter
due to poor retention of nitrite plus nitrate amdduction of organic nitrogen from the system
not present in inflow waters. Total phosphorus vedained in both mesocosm types, with higher
retention (74-81%) in the VFTW than in the FTW @0%). The nutrient retention in VFTW

was higher overall compared with FTW mesocosmsrdégss of biodegradable plastic presence.
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1. INTRODUCTION

Wetland construction or wetland restoration hasnbedfective in water quality
enhancement through nutrient reductions from afjuical and urban runoff (Fink and Mitsch,
2004; Nahlik and Mitsch, 2006; Mitsch et al., 2012015; Griffiths and Mitsch, 2017).
Treatment wetlands are ecological systems thaeagineered to treat polluted water through
macrophyte, soil, and microbial remediation andehsame varieties (Vymazal, 2007). Vertical-
flow treatment wetlands (VFTWSs) are fed inflowseaimhittently or continuously with a relatively
short hydraulic residence time (Stottmeister ¢t2l03; De Lange et al., 2013) and effective for
solids removal from the water column and nutrieytliog by means of phytoremediation and
microbial processes (e.g. denitrification and fidation) (Fuchs et al., 2011; De Lange et al.,

2013).

A floating treatment wetland (FTW) is a relativelgw phytoremediation technique to
reduce the impact of excess nutrient loading witheanwaterbody itself. FTWs consist of aquatic
or terrestrial plants grown hydroponically on aating mat directly in the open water of the
system allowing for direct treatment of eutrophiaters (Hubbard et al., 2004; Vymazal, 2007;
Headley and Tanner, 2011; Zhao et al., 2012; Olgtial., 2017; Pavlineri et al., 2017). The
plant roots are exposed directly to the water columstead of buried in a sand or gravel
substrate allowing for nutrients to be absorbedrdydnically, reducing the nutrient load
internally (Zhou and Wang, 2010; Headley and Tan@éd1; White and Cousins, 2013). The
development of an extensive root system along wittrobial biofilm formation provide for the
main nutrient removal pathway in this type of wetlasystem (Headley and Tanner, 2011).
FTWs have been shown to be effective at treatmdnhigh nutrient wastewaters (e.g.

stormwater, sewage, agriculture) (Headley and Tar2@ll; Yeh et al.,, 2015; Chen et al.,
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2016). Plant roots have a greater surface areasaxpon the water column, which allow for
greater bacterial colonization and unique rhizosphmaicrobial functions (Zhao et al., 2012;
White and Cousins, 2013; Urakawa et al., 2017)séhwo wetland designs (VFTW and FTW)
have been proven to be effective for agriculturd storm water treatments (Faulwetter et al.,

2011; Zhang et al., 2013b; Liu et al., 2016; Falet2017; Urakawa et al., 2017).

Since treatment wetlands have been specificallygded for wastewater treatment
removing high nutrients and suspended solids (®ar@nd Papenbrock, 2014; Mitsch and
Gosselink, 2015), it is possible to apply treatm&atlands to remediate aquaculture wastewater
as a cost-effective approach (Brown et al., 1999;dt al., 2010; Liang et al., 2017). One of the
most common treatment wetlands for aquacultureiaffl is characterized as subsurface flow
construction, which has a sand or gravel substvétere water flows either vertically (vertical-
flow) or horizontally (horizontal-flow), and treatavater is either reused in a closed system or
discharged in an open system (Konnerup et al., 2Mitsch and Gosselink, 2015).
Enhancement of aquaculture wastewater treatmeracitgpcould be possible through the
addition of various external carbon sources suamethanol, glucose, starch, and cellulose (Wu
et al.,, 2014). Several studies aimed to exploréemint denitrification activity with external
carbon in constructed wetlands, use of periphy®m @roducer of organic carbon (Sirivedhin
and Gray, 2006), and addition of different sugarg.(glucose and fructose) to wetland influents

(Lin et al., 2002; Lu et al., 2009).

Using biodegradable plastic as an external carboncs in treatment wetlands is a new
approach and two benchtop scale wetland microcegens previously designed with the use of
a cornstarch/polycaprolactone blend (Shen et @15 and poly-3-hydroxybutryate-co-3-

hydroxyvalerate/polyacetic acid (PHBV/PLA) (Yangatt, 2018). However, no application has
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been made in a medium scale outdoor treatment meettnd understanding the microbial
community composition in a treatment wetland withdegradable plastic is the next question to

improve the performance of nutrient removal.

In this study, we evaluated nutrient retention cgfiicy between vertical-flow and
floating treatment wetland mesocosms with and withobiodegradable plastic
(polycaprolactone) for treatment of marine aquaraleffluent to enhance nutrient cycling (e.qg.
denitrification). Likewise, determining how micra@bicommunity composition could change
with the addition of a biodegradable plastic anevhoicrobial community composition differs
between vertical-flow and floating treatment wetlanesocosms was concurrently studied for a
better understanding of microbial community composi of these two treatment wetland

systems.

2. MATERIALSAND METHODS

2.1 Vertical-flow treatment wetland construction

In May 2016, the experimental units were constaicé# the Everglades Wetland
Research Park of Florida Gulf Coast University (82452°N, 81°46.334°W) in two rows of
four wetland mesocosms (1.33 m x 0.47 m x 0.6dolgethylene tubs) with one row modeling
vertical-flow treatment wetlands (VFTW) and one ronodeling floating treatment wetlands
(FTW) in a batch systeni{g. 1). Vertical-flow constructed mesocosms were filgith a 10 cm
layer of gravel followed by an approximate 30 crsahd fill according to methods outlined in
Ahn et al. (2001) and Ahn and Mitsch (200B)g; 1). CordgrassSpartina patens) was collected

from a nearby 23-ha restored brackish marsh (5 @ptithe Naples Botanical Garden
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(26°06.181°N, 81°46.534°'W) (Zhang et al., 2017a) atanted in August 2016. Salinity was
gradually increased from O to 5 ppt to acclimatand for 10 months prior to starting the
experiment. Two mesocosms were incorporated witltia layer of polycaprolactone beads (3.5
mm in diameter, IC3D, TechTack Moldable plasticjibd at a depth of 9 cm (1.82 kg) within
the upper substrate layer prior to effluent feediagnesocosms to allow for settling of the
plastics, which are buoyant in water, as uppertsaesiayer was no longer densely packed after
burial. Two other mesocosms were used as a cawmitlobut biodegradable plastic incorporation.

A nutrient removal experiment was conducted dudiage 2017.
2.2 Floating treatment wetland construction

Four floating mat treatment mesocosms were filléith Wake water pumped up from an
adjacent lake. Each mat had 18 plantings (9 cm eli@nspaced 25 cm apart from the center of
each hole Fig. 1). Seven-cm cordgras$.(patens) plants were placed in aerator pots seated
within the floating mats. Artificial saltwater (Itent Ocean) was used to adjust salinity to be 5
ppt. A recirculating bioreactor system was equipjmedll four floating treatment wetlands: two
mesocosms had bioreactors with polycaprolactondPf@stic beads as a reactor medium with
two mesocosms having empty bioreactors used asotofihe recirculating bioreactor setup
consisted of 250 mL biodegradable beads (472 AQUWAMAXX bioreactors (1 L volume)
connected with a filter pump (Cobalt MJ-1200) anitbev nozzle controlled to a flowrate at 1 L
min™.

2.3 Upstream tank setup

A 560-liter upstream tank (dimensions 1.00 x 0@ % nt) housed 10 Pinfish_égodon

rhomboides) used to generate the brackish aquaculture waste\frag. 2). A filtration system
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consisted of a canister filter with ultraviolet ritiger lamp (55.9 cm h x 35.6 cm d, Red Sea
brand) and a 3.8 L bioreactor (NextReef, MR1 XLjhapolypropylene plastic fill (2.54 cm Bio
Barrels, Pentair) and filtration pump (Maxi-jet P#owerhead, Pentair). The brackish
aquaculture wastewater was fed manually once a Vvi@elone month prior to starting the
experiment and then every six days after startvimr months to both systems. Average inflow

parameters such as temperature, salinity, DO, atréent concentration are shownTiable 1.
2.4 Water sampling and chemical analysis

Water samples were collected in 250 mL autoclavelyppopylene sampling bottles
(ThermoScientific Nalgene) from the outflow pipe mesocosmsHig. 1) and stored at -20°C
until analysis. The hydraulic loading rate of tretical-flow systems were set to be 3.03 L Hay
(48.4 cm day), manually fed to the system from the upstrearnk,tavhich allowed for a
complete flow-through of three days to the outflpipe. The hydraulic loading rate (HLR) was
determined according to Mitsch and Gosselink (2Qis#)g the following equation, g = 100Q /
A, where q = (HLR), (cm da}), Q = inflow rate, mMday*, and A = wetland surface area,?jm
Water quality parameters such as water temperaplte salinity, and dissolved oxygen (DO)
were measured in the FTW mesocosms using a YSPRi® meter. Turbidity was determined
using a Trilogy fluorometer with a turbidity modu{@urner Design). Ammonia concentration
was colorimetrically conducted using a Spectronien€sys 20 spectrophotometer (Thermo
Scientific) using a standard sodium salicylate mdthNutrients in water samples were
colorimetrically determined using a SmartChem Aotidgzer to measure nitrate-nitrite nitrogen
and Total Kjeldahl nitrogen (TKN) according to ER@MiIdelines 353.1 and 351.2 respectively

(USEPA, 1993b, a). Total nitrogen was determinetnfthe combined TKN and nitrate-nitrite



172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

concentrations. Total phosphorus (TP) concentrati@as determined according to the EPA

guideline 365.1 (USEPA, 1993c).
2.5 Plant tissue samples

Aboveground plant tissue samples (9°cmere randomly collected from all mesocosms
at the start and end of the experiment. Changgdant stem height were measured for an

estimate of daily growth rate over each systenopleri
2.6 Microscopy

Water samples were collected from the outflow pipesach mesocosm and fixed with
formalin (2% final concentration [vol/vol]). Cellsvere stained with 4’, 6-diamidino-2-
phenylindole (DAPI), then part of the fixed watemgles (0.8 mL) were filtered onto black
0.22-pum polycarbonate isopore membrane filters (B TRilliporeSigma) with a standard hand
vacuum pump operation. An anti-bleaching agent wsed as the mounting medium (AF1,;
Citifluor). Cells were observed under 600x magaifion using an Olympus BX51
epifluorescence microscope system. For each,fitere than 10 random fields were viewed to

determine cell numbers.
2.7 Sample collection for microbial analysis

Biodegradable plastics were collected in clean R0phastic centrifuge tubes from those
embedded in the VFTW mesocosms and bioreactofseoRTW mesocosms. Root samples were
collected using sterilized scissors and storedOinm&. centrifuge tubes, consisting of a mixture
of 0 - 15 cm depth segments from two distinct lmeeg within each mesocosm. Soil samples
were collected from two distinct locations in eadrttical-flow mesocosm at a depth of 5 cm.

The collected soil samples were vortexed for homiggion after initial collection. Water



194 samples (250 mL) collected from all FTW mesocosnesewfiltered using 0.2 pum cellulose
195 nitrate membrane filters (47 mm diameter, Fisch@er8ific Nalgene Analytical Test Filter) for

196  further DNA extraction. All samples were stored20°C for DNA extraction.

197 2.8 High throughput sequencing

198 DNA samples were extracted from biofilm on PCL lacbot, soil, and water filter
199 using the MagAttract PowerSoil DNA KF kit (Qiagemccording to the manufacturer’s
200 instructions. Extracted DNA was eluted into 100 HB solution. Archaeal and bacterial 16S
201 rRNA genes were amplified using the primer set,y515%5'GTGYCAGCMGCCGCGGTAA)
202 and 926pfR (5'CCGYCAATTYMTTTRAGTTT) (Parada et aQ16) tagged with the lllumina
203 i5 forward (TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) andi7 reverse
204 (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) sequencing mmer. Each PCR
205 reaction contained 25 pL reactions with Qiagen kwtJaq master mix, equal amount of
206 forward and reverse primers (5 UM each), and 1 1DNA template (1 to 20 ng). Thermal
207  cycling consisted of an initial denaturation at@5dr 5 min, followed by 35 cycles of 94°C for
208 30 sec, annealing at 54°C for 40 sec, and exterai@2°C for 1 min, with a final extension of
209 10 min at 72°C. PCR product from the first stage ween transferred to a second PCR based on
210 qualitatively determined concentrations with prisésr the second PCR based on the Illumina
211  Nextera PCR primers forward (AATGATACGGCGACCACCGAGEBTACAC-[i5 index]-
212 TCGTCGGCAGCGTC) and reverse (CAAGCAGAAGACGGCATACGAG[i7 index]-

213 GTCTCGTGGGCTCGG). The second stage amplificatios wan with the same as the first
214 except for 10 cycles instead of 35 cycles. Amplgconere visualized with eGels (Life

215  Technologies), products were pooled equimolar wei#lth size selected quantified using the
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Quibit 2.0 fluorometer (Life Technologies). Amplit® were then loaded on an lllumina MiSeq

(lumina) 2 x 300 flow cell at 10 pM (RTL Genomijcs

For analysis, FASTQ formatted files were mergedchgishe PEAR Illumina paired-end
read merger (Zhang et al., 2013a). Prefix derepbisawas completed using the algorithm of
USEARCH (Edgar et al., 2011). Clustering at a 3%edjence level was conducted using the
USEARCH (Edgar et al., 2011). Operational taxonoomdt (OTU) selection was performed
using UPARSE-OTU algorithm (Edgar, 2013). Chimerdaeaking was completed using
UCHIME (Edgar, 2010) and detected chimera sequenwegs removed. Representative OTUs
were used to determine taxonomic information thlhowagbasic local alignment search tool
(BLAST) at National Center for Biotechnology Infoation (NCBI), and MG-RAST (Meyer et
al., 2008). The high-throughput sequence datasets deposited in GenBank under BioProject

number PRINA496041.

2.9 Data analysis

The significant differences were determined when @05. Tukey-Kramer method was
employed in conjunction with a one-way analysisaiance (ANOVA) using JMP data analysis
software (SAS Institute) according to Lehman (20fa5)testing statistical differences among
multiple mesocosm settings. Student’s t-test wae ahplemented to determine if two sets of
data were significantly different from each othédl statistics (one-way ANOVA, Tukey-
Kramer, and Student’s t-test) were completed usimgtailed and unpaired data analyses. Data
were presented by mean * standard deviation unkbeswise noted. General statistics of high-
throughput sequence data were performed using MGIR@Meyer et al., 2008). Diversity index
calculations (Shannon index, Menhinick’s richnessd aPielou’s evenness indices) were

implemented using Microsoft Excel.
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3. RESULTSAND DISCUSSION
3.1 Physical parameters

Average rainfall over the experimental period Wa& + 0.9 mm day measured using
the real-time hydrologic, water quality monitoringnd meteorological field station at the
Everglades Wetland Research Park (Zhang et al.7e&@0ivhich was less than the calculated
HLR 48.4 cm day, with an average rain gauge depth of 1.2 + 1.3Rhysical parameters were
measured for FTW mesocosms with an average watgrai@ture of 29.9°C, salinity of 5.1 ppt,
pH of 7.95, and DO of 3.2 mgL Turbidity (NTU, nephelometric turbidity unit) wasgh in the
VFTW mesocosms (23.5 + 3.0 NTU and 47.0 = 7.3 NTithhand without biodegradable plastic,
respectively) and low in the FTW mesocosms (1.7L1=NTU and 2.26 = 0.2 NTU) due to the

impact of soil.
3.2 Effect of biodegradable plastics for nutrient removal

Total nitrogen retention was significantly diffetgp < 0.001,n = 8, one-way ANOVA)
and higher in the vertical-flow systerable 2). TN retention performance in our vertical-flow
system (86.9-90%) was consistent with other saligeaculture effluent treatment wetland
systems with a mean removal efficiency of 98% TNo{n et al., 1999), and 98.2% TDIN
(Webb et al.,, 2012)T@ble 3). On the contrary, TN retention was not observedFTW
mesocosms over the experimental period as outflowcentrations exceeded the inflow
concentration of effluentT@ble 2), leading to a negative retention rate, consisteiih a
previous aquaculture wastewater treatment studywisigo outflow concentration of TKN

exceeded feed water TKN (Lin et al., 2010). Howewee presence of PCL significantly
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increased the TN retention, even though a negaétention occurred in this system, a greater
negative TN retention was observed without theafdeCL beads in our control condition {p
0.0001, Tukey-Kramer pairwise). This finding was nentified in the VFTW systeniT@ble 2).

A comparison study in China found that floatingatreent systems had a lower TN removal
efficiency compared with vertical-flow systems (Zlgaet al., 2015). Newly constructed or
newly restored wetlands are found to have a low @, therefore the addition of an external
carbon can enhance denitrification in these wetlaystems (Bachand and Horne, 1999), as
evidenced in the FTW system in our study. Ovethkse lines of evidence indicate the strict

carbon limitation in the FTW than the other treating@etland systems (Zhang et al., 2015).

Inflow TN was composed of over 98% inorganic nigngmainly in the form of nitrate
and nitrite Table 1). In the VFTW system nitrate plus nitrite ratiocdsased to be 17.6% in the
control and 16.2% with embedded PCL, along witleerease of the TN:TP ratio from 8.9 to 4.7
and 4.5 respectively, indicating microbial nitrogemoval processes (i.e. denitrification or
DNRA [dissimilatory nitrate reduction to ammoniun(fig. 3a). Our ammonia measurements
showed the depletion of ammonia from 9.2% in infkew.1% in the control and 5.7% with
embedded PCL, with an increase in organic nitrdgefb.3% and 78.2%, respectively. Based on
these findings we concluded that denitrificatioot DNRA, was the major process in the
removal of nitrate plus nitrite pool in the VFTW the FTW system nitrate plus nitrite ratio
decreased from 94.2% to be 40.5% in the FTW coatndl10.7% in FTW with PCL condition,
with an increased removal efficiency with preseocBCL (Fig. 3a). Additionally, we found a
decrease of ammonia in outflow water from 5.8%.89%@in control and 4.3% with PCL
conditions. Organic nitrogen increased to 56.3%antrol and 85.0% in FTW mesocosms with

embedded PCL, a greater proportion of organic gé&nowith presence of PCL. Aquaculture
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effluent contains low organic nitrogen and phospkan the water column with 7-32% of
nitrogen found in suspended solids (Turcios anceRlagock, 2014). As previously discussed,
TN retention was not observed in FTW mesocosmdaltiee production of organic nitrogen
from the system not present in inflow waters legdmthe negative retention of TN as
production of nitrogen occurred. However, there wa®crease in inorganic nitrogen
concentrations with greater decreases observedhatpresence of PCL, suggesting the use of
PCL as a carbon source for denitrificatiéing; 3a). In contrast with the VFTW system, the
TN:TP ratio in outflow water increased from 13.22in control and 17 with PCL medium
supporting our finding of greater nitrogen concattn found without presence of PCL in the
FTW systemFig. 3b). The accumulation of organic nitrogen within 88BN system was
attributed to the release of organic nitrogen fygamt pot soil within the floating mats which
was supported by the anomaly of water column miaetammmunity dominated by soil bacteria,
which will be discussed further in later sectiohise production of organic nitrogen in wetlands
can also partially be attributed to nitrogen-fixiogcteria which fix Nfrom the atmosphere
leading to production of organic nitrogen reduding overall nitrogen removal efficiency

(Mitsch and Gosselink, 2015; Zhang et al., 2017b).

TP retention was significantly higher in the VFT8§6stem than for the FTW system<p
0.0032,t-test), however, no significance was found with phesence of PCL in both mesocosm
systems Table 2). The TP retention in the VFTW mesocosms had anmretention of 74 -
81.1%, which was lower than similar studies, 99%o(® et al., 1999) and 88% (Lymbery et
al., 2006) Table 3). Zhang et al. (2015) found TP removal efficiemagged from 26-70% and

was more variable than nitrogen in constructed ametlsystems. The mean TP retention in the
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FTW system was 17.4-39.5%, consistent with findibg<.in et al. (2010) with 2-18% removal

and Pavlineri et al. (2017) of 18.2% removal eéfiwy, with an increase over timeaple 3).
3.3 Growth of Spartina in vertical-flow and floating treatment systems

Change in plant height ranged from 1.7 to 17.3 nayi‘dvith the highest growth rate
occurring in the FTW mesocosms with PCL medidig(4). Even though there seemed to be an
increased growth rate associated with use of PCdiune in the FTW system, the range of
measurements overlapped when looking at mean gn@ateh Due to a low number of replicates

in this study § = 2), no statistical comparison was made.
3.4 Bacterial abundance

Total bacterial abundance of wetland water colugereerally range from 0o 1 cells
mL* (Urakawa and Bernhard, 2017), which was similathwéur findings. No significant
differences were found in the outflow bacterial matance with the following distribution;
VETW control (3.7 x 10+ 1.8 x 16 cells mLY), VFTW with embedded PCL (3.5 x 4@ 1.7 x
10° cells mLY), FTW control (1.0 x 10+ 6.3 x 16 cells mLY), and FTW with PCL medium (3.2
x 10° + 2.2 x 16 cells mL?Y).

3.5 High-throughput sequencing of 16SrRNA gene
3.5.1 Taxonomic overview of dominant phyla

A total of 86,547 sequences were analyzed andtegsul 2346 operational taxonomic
units (OTUs) Table 4). Shannon index indicated significant differenbesween sample means
(p = 0.02, one-way ANOVA) with the lowest diversitywater samples and the highest diversity
in root samples. There were significant differenflesnd between VFTW root and FTW water

samples (p = 0.03, Tukey-pairwise). The highesemdity found in soil samples was consistent
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with previous reports (Urakawa and Bernhard, 20T g taxonomic analysis identified 29 phyla
from all samples: 12-21 collected from PCL plastiofilm, 15-24 in root samples, 17-20 in soll
samples, and 8-11 in water samples. No statigfifi@rence was found in PCL biofilm samples
(p = 0.06,t-test) and soil samples (p = Ot8est). Root samples were significantly differemt(
0.03,n = 2, one-way ANOVA) between VFTW control and FTWwPCL (p = 0.03, Tukey-
pairwise). Water samples in floating treatmenteystonditions having PCL bioreactor medium

were significantly lower than the control samples=(0.0002;-test).

The three predominant phylum present in all samplese Proteobacteria (2-44%),
Cyanaobacteria (0.04-51%) andBacteroidetes (0.02-30%) Fig. 5). These results were consistent
with previous studies of wetland microbial commigst(Bai et al., 2014; Liu et al., 2016;
Urakawa and Bernhard, 2017). Member$ofteobacteria are important in wetlands because of
their strong involvement in biogeochemical cyclifigu et al., 2016) and they dominated in a
majority of samples except for water column samfriesn FTW. The two most abundant phyla
in the water column samples wdfamicutes (59-90%) andActinobacteria (6-17%) Fig. 5).
Unexpectedly, the most dominant memberafmicutes was identified asBacillus (57-88%),
this trend agreed between four samples assuring ggaroducibility of the method used. We
attributed this finding to the presence of soilhmtplant potsKig. 2). Bacillus is recognized as
a representative degrader of biodegradable plagtarsexampleBacillus pumilus, isolated from
a freshwater pond and river were shown to degratie(p-caprolactone) hydrolytically (Tezuka
et al., 2004). However, presenceBaicillus was found regardless of PCL medium indicating that

Bacilluswas not directly enriched by the biodegradabletjgagl able 5).

Soil microbial communities in VFTW were dominateg Broteobacteria (40-85%),

Cyanaobacteria (5-40%), Bacteroidetes (2-10%), andPlanctomycetes (2-7%) Fig. 5). The soil
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was covered with approximately 5-10 cm of wateretarig. 2). Cyanobacteria is a typical
phylum found in freshwater sediment and water colwommunities (Paerl, 2014; Urakawa and
Bernhard, 2017; Paerl, 2018). Thus, the observedoimial community might resemble a typical
freshwater sediment community rather than a typscall community (Zhang et al., 2013b). A
steep oxic-anoxic gradient contributes to maintaigh microbial diversity and functionally
diverse organisms (Urakawa et al., 2017). Our tessuipported this finding by having the

highest diversity found in soil samples of our \aad.

3.5.2 Comparison of rhizosphere communitiesin soil and water

In wetland plants, the rhizosphere acts as anfaterbetween the surface of roots and
the surrounding soil, which transports oxygen atitelominerals to the roots which results in
unique microbial communities distinct from surroingd soil and water column in a case of

floating macrophytes (Mitsch and Gosselink, 201EgKawa et al., 2017).

The nitrogen cycle plays an important role in wadlgplant metabolisms through the
transformation of nitrogen species (i.e. ammoni @trate). Mesor hizobium andRhizobium are
essential diazotrophs and plant growth-promotingogphere bacteria found in wetland systems
(Zhang et al., 2013b; Urakawa et al., 20IMgsorhizobium was identified in root, soil, water,
and PCL biofilm samples whil&hizobium was identified only in vertical-flow root samples
(Table 5). Nitrogen-fixing bacteria were more abundanthe VFTW than FTW mesocosms.
The only nitrifying bacterium identified walitrospira, in root, soil, and VFTW PCL biofilm

samples.

Methanogenesis is an important process in wetlémadsigh which methane is naturally

produced by methanogens and methane oxidation ®dtam methanotrophic bacteria to



373 convert methane to carbon dioxide (Mitsch and Qodse2015). Archaea are important
374 methanogens in wetland sediments contributing tthame production (Madigan et al., 2012;
375 Urakawa and Bernhard, 2017), three genera of metwmc archaea found were
376  Methanobacterium, Methanoregula, andMethanosarcina. Six methanotrophic genera were also
377 found, Methylocystis, Methylobacter, Methylococcus, Methylosoma, Methylocella and
378  Hyphomicrobium. These methanogens and methanotrophs were morelaitin the VFTW
379 than in the FTW mesocosmgable 5). Hyphomicrobium belonging toAlphaproteobacteria and

380 Methylibium belonging to Betaproteobacteria were the two most abundant facultative
381  methylotrophic genera and widely distributed in awonstructed wetland systems, which
382  supported a previous wetland study (Zhang et @lL3B).Methylocella was the most widespread
383 methanotroph found in this study. Coexistence dfhar@ogens and methane oxidizers suggests
384 the existence of the methane cycle and the skeelative abundance of these microorganisms
385 indicated more imperative role of this processha vertical-flow system than in the floating

386  wetland system.

387 Sulfate-reducing bacteria (SRB) were the predontirsatfur cycling microorganisms
388 found in root samples and PCL biofilm. Although S®Bre found in both systems, the vertical-
389 flow system contained a greater diversity of orgars (i.e.Desulfobulbus, Desulfatitalea,
390 Desulfobacterium, Desulfonema, Desulfocapsa, Desulfopila, Desulfomicrobium, and
391  Desulfovibrio) than were found in the floating treatment systéme. Desulfovibrio and
392  Desulfobulbus) (Table 5). The floating treatment system contained veryanamount of SRB in
393  contrast to Urakawa et al (2017) which found a vl SRB community in floating treatment

394  rhizosphere. SRB communities in rhizosphere anldrsai Phragmites australis planted wetland
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(Zhang et al., 2013b) and wetland soils (Faulwetteal., 2009; Wang et al., 2012) were very

diverse and consistent with our findings.

3.5.3 Denitrification in vertical-flow and floating treatment systems

Denitrification is the main nitrogen removal progdas treatment wetland systems as
discussed previously and paired with nitrificati@nprocess in which nitrate is produced from
ammonium, can fully remove nitrogen microbially frovastewater systems (Faulwetter et al.,
2009). Predominant denitrifiers found in our studgre Bacillus in water column samples,
Nitratireductor, a marine denitrifier (Labbe et al., 2004) repnésd in all samples in minor
amount, andPseudomonas (0.2%) in soil samples with embedded biodegradplalstics Table
5). Pseudomonas has been found to degrade plastic particles iruddan river environment
(McCormick et al., 2014), soil environments (Emadét al., 2017), and the deep-sea (Sekiguchi
et al., 2011). The presence $seudomonas only in soil samples with PCL may indicate the
possibility of PCL use as a substratum or degrditigbas indicated by similar findings of
Pseudomonas on plastic pot biofilm from a floating treatment eed (Urakawa et al., 2017).
These findings support our observation of increasdeditrification activity in the VFTW and

FTW construction with the presence of PCL.

3.5.4 PCL degradation in a vertical-flow and floating treatment constructed wetland

The most abundant genera found in PCL biofilm saspbllected from VFTW sediment
were identified a<scillatoria (7%) andLeptolyngbya (6%) and from FTW bioreactors were
Brasilonema (8%) andTrichormus (9%) belonging to the phylur@yanobacteria (Table 5).
Additionally, Leptolyngbya was identified in VFTW sediment with embedded PClhe

localization ofCyanobacteria in VFTW plastics was attributed to a partial expesof plastics to
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the surface Kig. 2). We identified manyCyanobacteria within our study in presence of PCL
plastic, consistent with previous marine plastibréeresearch (Bryant et al., 2016; Debroas et
al.,, 2017; Quero and Luna, 201Qyanobacteria were identified as the key species in the
microbial network which is formed on the surfaceptdstics (Debroas et al., 2017). However,
none of these studies confirmeddyanobacteria are actively involved in the biodegradation of
the plastics (Debroas et al., 2017; Quero and LR0&7). Bryant et al. (2016) and Debroas et al.
(2017) identifiedLeptolyngbya on the surface of plastics collected from the sigfaater of the
North Atlantic. It should be noted thatCyanobacteria are able to synthesize
polyhydroxybutryate, an intracellular storage coommb and bioplastic, under photoautotrophic
or chemoheterotrophic conditions (Balaji et al.120Singh et al., 2017). Additionally, several
genera can synthesize polyhydroxyalkanoate (PHA) @mtain PHA biosynthesis genes (e.g.
Oscillatoria limosa, Anabaena cylindrica, Synechoccocus spp.), these findings can lead to the

speculation they are also able to degrade thegdalsiic storage compounds for intracellular use.
3.6 Economic impact of plastic-embedded constructed wetlands

As previously discussed, constructed wetlands ameficial in terms of nutrient
retention. Our approach will potentially enhance fplerformance of nutrient retention processes
and increase the value of constructed wetlands.ugéel 1 kg i3 of PCL within the VFTW
system. If we assume to construct a 1 ha vertloal-fwetland embedded with PCL
biodegradable plastics, it would cost approximat®§6,500 only considering the price of
plastics. Boley et al. (2000) estimated the condionpof plastic substrate per kg N-NGnd
cost of denitrification per kg N-Nin a study of an aquaculture bioreactor systenh \ait
approximate 0.64 kg of N-NOremoval by PCL per kg. A study by Batson et aD1@)

estimated the nitrogen removal from a construcipdrian wetland as 0.0164 kgmyr™.
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Therefore, if we assume all embedded PCL is useddaitrification, the constructed wetland
has atleast a 39 times performance increase thgulareconstructed wetlands to remove
nitrogen, suggesting a great potential for useityscape and other high-priced areas. In the
future, we anticipate that the use of biodegradplastics will increase due to the current plastic
pollution problems. A part of used biodegradabéstics can be embedded in soil and used as a
carbon source by wetland microbes. In this scen#r® cost of used biodegradable plastics can
be negligible. Our study showed the potential us¢his system however, much longer-term

monitoring and more expanded field experimentgegeired in the future applications.

4. CONCLUSIONS

Wetlands play a vital role in water purificationdanutrient cycling which can be utilized
to treat agricultural runoff and aquaculture disgea in a sustainable fashion (Headley and
Tanner, 2011; Mitsch and Gosselink, 2015). Comparf wetland construction performance in
this study between a vertical-flow treatment wedlaand a floating treatment wetland showed
there was an increased nutrient retention for @dthand TP with a vertical-flow system. The
use of a biodegradable plastic, PCL, was utilized aovel approach in this study as an external
carbon source to enhance microbial activity. PCLsvgaown to increase the TN nutrient
retention in the FTW system, however, this systetilgted a negative retention during our
study period due to the release of organic nitrofgem soil in plant pots, which was inferred
from the dominance ofFirmicutes (59-90%) (e.g.Bacillus) in the water column of FTW.
Presence of PCL in the FTW system allowed for atgreproduction of organic nitrogen and a
greater removal of inorganic nitrogen, suggesti@). Bnhanced nitrogen cycling within this

system. Microbial community composition was showrbe altered with the presence of PCL,
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community selection for cyanobacterial genera atierobioplastic-degrading microorganisms
was found from high-throughput sequencing analysisther long-term studies are needed at
this point to have a greater understanding of miiedglastic degradation and associated nutrient
cycling in constructed wetland systems. A generat @nalysis of utilizing a biodegradable
plastic for enhanced microbial activity and nuttieemoval was conducted, it was seen that the
upfront cost is high, however, compared to the mtaeN-NO; removal efficiency in the system
this cost is negligible over time. We believe ttia potential for use of a biodegradable plastic
to enhance nutrient removal within a constructedlamed can be a promising approach in

wetland engineering for increased nutrient cyckiffficiency.
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Figure Legends

Fig. 1. Design of two wetland systems a) Overview of experimental setdp) schematic of
vertical-flow treatment wetland (VFTW) mesocosm ahdchematic for floating
treatment wetland (FTW) mesocodm andc) schematic denoting length (1.33 m) x
width (0.47 m) x height (0.61 m) with different dgs depth and width of mesocosms

with PCL, polycaprolactone, identical design wasdufor controls without PCL aspect.

Fig. 2. Mesocosms used in this study. a) Overview of VFTW mesocosms in setiy),Spartina
patens location within mesocosm relative to edge of w)oy FTW mesocosm containing
PCL plastic beads which had the ability to floateawlloodedd) overview of FTW
mesocosm with bioreactor setup (rear raayf; TW mesocosm containing PCL plastic as
reactor mediunt) configuration of floating mat with 18 planting helg) view of
aerator pot and plant root, ahfloverview setup of upstream aquaculture tank with

double filtration system that housed Pinfislagodon rhomboides).

Fig. 3. Changein inflow and outflow nutrient concentrations. a) percent composition of
nitrogen in inflow and outflow anld) TN:TP ratio change over time, with (-) denoting
control and (+) presence of PCL in constructionsofid horizontal line indicates mg-

based Redfield ratio between N and P (8.9).

Fig. 4. Changein stem height of Spartina patens. Measured in mm daywith the same naming

scheme as previous. Data are shown as mean = farge).

Fig. 5. Relative bacterial and ar chaeal abundance at the phylum level. Percent relative

abundance distribution after normalization to 10,88ads per samplBroteobacteria



716 are shown at the class level. Sample naming usesl 2 showing replication and (-) and

717 (+) denoting presence of PCL.
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for controls without PCL aspect.
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Figure 2 Mesocosms used in this study. a) Overview of VFTW mesocosms in setdy),Spartina patens

location within mesocosm relative to edge of tapVFTW mesocosm containing PCL plastic beads
which had the ability to float when flooded), overview of FTW mesocosm with bioreactor setupr(rea
row), €) FTW mesocosm containing PCL plastic as reactor umedi configuration of floating mat with
18 planting holesg) view of aerator pot and plant root, angdoverview setup of upstream aquaculture
tank with double filtration system that housed RimfLagodon rhomboides).
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257

20 1

15 1

10 ~

Change in stem height (mm day?)

J m

VFTW (-) VFTW (+) FTW (-) FTW (+)

Figure 4 Change in stem height of Spartina patens. Measured in mm dayover the month testing
period with (-) denoting control and (+) present®GL in construction. Data are shown as mean gean
(n=2).



100%

1 g | L '
LAY :
90% I I =
80% ! m
| - Il l
70%
il “ B ‘ 5 I |
& 60% = l ﬂ“ B
-
1 E
2 50%
p H :
E —
T 40% | B .
-g= u g =
30% E i =
i L i
10% | B |
0% . — . I l - Ll = [
3 o NN 53
QO:\,QO:" {}}Q(}m "*\\ ’\'\\ h 'LQ\ wt ot '»\ 'L@\ \\\'\«\ '\,’hm\x\ A *Loa,\“\rﬁ‘f
S @-“@ SSESET I TFI L L
& O A L
* S @‘ 6"" oS &

B Thermarchaeata

@ Euryarchaeota

0O Acidobacteria

B Actinobacteria

@ Aquificae

@ Armatimonadetes

B Bacteroidetes

B Chlamydiae

@ Chlorobi

O Chloroflexi

0O Cyanobacteria

B Deferribacteres

@ Deinococcus-Thermus
O Fibrobacteres

O Firmicutes

0O Fusobacteria

B Gemmatimonadetes
B Ignavibacteriae

B Lentisphaerae

@ Nitrospirae

B Planctomycetes

B Alphaproteobacteria
O Betaproteobacteria

O Deltaproteobacteria
O Epsilonproteobacteria
B Gammaproteobacteria
B Spirochaetes

@ Tenericutes

B Verrucomicrobia

B Candidate division NC10
B Unknown Archaea

O Unknown Bacteria

Figure 5 Relative bacterial and archaeal abundance at the phylum level. Percent relative abundance

distribution after normalization to 10,000 reads g&mple Proteobacteria are shown at the class level.

Sample naming uses 1 and 2 showing replicationrahd (+) denoting presence of PCL.



Table 1 Inflow water quality parameters.

Wetland NO3-NO, (mg NH,"(mgL  OrganicN TN (mgL%) TP (mglL') DO (mglL? Salinity Temp (°C)
type L) ) (mgL?) (ppt)

FTW 4.35+0.82 0.27 £0.08 0.0+£0.0 462+1.10 035+0.20 7.04+0.27 16.2+0.84 29.8+4.25
VFTW 15.8+3.34 164+£031 031+050 178+031 199+041 6.60+£0.16 166040 29.5+1.05

Data are mean + standard error of upstream tatkeetf before loading to the FTW system=4) and
the VFTW systemr(= 4) mesocosms.



Table 2 Nutrient flux of two constructed wetland systems.

TN (mg i day?) TP (mg nif day?)
Wetland PCL Inflow Outflow R?”.‘O"a' Reduction (%) Inflow Outflow R‘?”_‘O"a' Reduction (%)
efficiency efficiency
VFTW ) 8.63+0.26 77.41+0.45 90.0 1.82+0.09 7.82+0.f1 81.1
+ +
(+) 86.0420.19 11.29 £ 0.53 74.75 £ 0.72 86.9 9.64+0.02 251+0.19 7.13+083 74.0
FTW ) 27.48 £ 0.59(-5.09) £ 0.72 0 1.01£0.06 0.66 +0°1 39.5
) 22.39£0.13 53 95 + 0.65(-1.56) + 0.78 0 1.67£0.04 4 354005 020+089 174

*Data are mean * standard errar< 8) for all experimental conditions with perceatention quantified
from ((inflow concentration — outflow concentrat)ofinflow concentration)) x 100 (Olguin et al., 201
The letter next to the monthly retention denotestistical significance from completing, one-way
ANOVA for TN, and significance shown for TP retemntjt-test.



Table 3 Removal efficiency of various constructed wetlands for aquacultur e effluent treatment.

Study Scale Construction tygdant species useolR emov(zg/lo)e*fflmency Salinity (ppt) Terrzgg;ature Location
Suaeda eseroa,
Salicornia . )
Brown et al., 1999 Mesocosm Subsurface flow  bigelovii, TN:98, _TIN'94’ 10 22.6-37.4 Tucson, AZ
i TP:99 USA
Altriplex
barclayana
Lymbery etal., Mesocosm Horizontal Juncus kraussii TN:69, TP:88 6.6 - 24.8 N/A Australia
2006 subsurface flow
Cannaindica,
Li et al., 2007 Pilot-scale  Vertical - flow Typha latifolia, TN:54.6 TP:80.1 0 23.6-24.0 China
Acorus calamus,
Arave sisalana
Vertical - Cannaindica, N/A
Zhang et al., 2010 Pilot-scale downflow vertical Typha latifolia, TN:48, TP:17 N/A China
: Freshwater
- upflow hybrid  Acorus calamus
. Salicornia TDIN:98.2, North Wales
Webb et al., 2012 Pilot-scale Subsurface flow europaea DIP:36 - 89 22 23.1 UK
N/A
Free water surfac Phragmites Litopenaeus
Lin et al., 2003  Pilot-scale— subsurface flow gml TIN:68.2, PO4-P:5.4 P ; 235 Taiwan
; australis vannamei
hybrid
culture
Eichhornia
crassipes, Pistia
Floating stratiotes, Typha
. . macrophyte — angusuf(_)ha, .
Linetal., 2010  Pilot-scale Phragmites  TN:0 - 18, TP:2 - 18 0 N/A Taiwan
subsurface flow >
. communis, Canna
hybrid )
generalis,
Cyperus
alternifalius
Chrysopogon
. . zizaniodes, Typha
De Stefani et al., in-stream Floating treatmer latifolia, TN:13 - 29, TP:65 N/A 10.0-14.0 Italy
2011 wetland . Freshwater
Sparganium
erectum
Li and Li, 2009  Pilot-scale’ 08lng reatmer lpomenea .94 6 1p.1g 7 N/A 24.4 China
wetland aquatica Freshwater
. . : TN: 86.9 - 90.7
This study Mesocosm  Vertical - flow Spartina patens TP: 74-811 7.4 28.8 FL, USA
Floating treatmer . TN: O
Mesocosm wetland Spartina patens TP 17.4 -395 5.1 29.9 FL, USA

*Removal efficiencies are denoted TN (total nitnogeTIN (total inorganic nitrogen), TDIN (total
dissolved inorganic nitrogen), TP (total phosphsjowDIP (dissolved inorganic phosphorous), and
phosphate. Temperature is denoted as air temper&tursubsurface flow and water temperature for

floating treatment systems. N/A shows data not oneas



Table 4 Summary of DNA sequencing and diversity indices.

PCL Mean Pielou Mgnhinick Shannon

Samples presence Sequences OTU S(laquence evenness rl_chness index
ength index

PCL Biofilm
VFTW, 21,519 776 411 £19 0.42 2.53 2.32
VFTW, 13,069 504 412+ 6 0.41 2.04 2.18
FTW, 13,118 211 411 +£2 0.62 1.09 2.91
FTW, 13,496 278 412 +8 0.53 1.35 2.62
Root
VFTW, ) 22,640 622 412 +8 0.39 2.5 2.14
VFTW, ) 23,988 871 411 +£13 0.48 2.98 2.73
VFTW, (+) 23,930 764 412 +6 0.48 2.53 2.14
VFTW, (+) 11,796 525 411+ 15 0.48 1.93 2.43
FTW, ) 27,026 472 4116 0.47 1.86 2.46
FTW, ) 19,676 316 4116 0.51 1.33 2.48
FTW, (+) 15,924 194 411 +4 0.48 0.89 2.14
FTW, (+) 17,078 355 411+3 0.48 1.56 2.43
Sall
VFTW, ) 18,851 646 412 +8 0.6 2.26 3.23
VFTW, ) 17,544 529 412 +8 0.6 2.15 3.24
VFTW, (+) 20,381 208 411+ 14 0.29 1.04 1.37
VFTW, (+) 22,693 827 412 +8 0.55 2.57 3.07
Water
FTW, ) 20,580 143 412 +£5 0.29 0.75 1.24
FTW, ) 21,014 135 412 +4 0.22 0.76 0.95
FTW, (+) 25,287 113 412 £ 4 0.17 0.64 0.69
FTW, (+) 26,658 128 412 +3 0.35 0.71 15

Diversity indices were calculated after normaliaatto 10,000 reads per sample. Samples 1 and 2edeno

replicates and (-) and (+) denotes presence ofiRCanstruction when applicable.



Table 5 Functional groups at the genuslevel.

Nitrogen - fixing bacteria

Alphaproteobacteria

Betaproteobacteria

Cyanaobacteria

Nitrifying bacteria
Nitrospira

Gammapr oteobacteria
Denitrifying bacteria

Bacilli

Alphaproteobacteria

Nitrospirillium
Rhizobium
Bradyr hizobium
Mesor hizobium
Azospirilium
Azohydromonas
Azonexus
Derxia
Anabaena
Nostoc
Calothrix
Cylindrospermum

Nitrospira
Nitrosococcus

Bacillus
Nitratereductor

Gammaproteobacteria Pseudomonas
Sulfate-reducing bacteria

Deltaproteobacteria

Desulfobulbus
Desulfatitalea
Desulfobacterium
Desulfonema
Desulfocapsa
Desulfopila
Desulfomicrobium
Desulfovibrio

Sulfur-oxidizing bacteria

Chlorobia
Betaproteobacteria

Gammapr oteobacteria

M ethanogenic
archaea

Methanobacteria
Methanomicrobia

Chlorobium
Thiobacillus
Thiobacter
Thiothrix

Methanobacterium
Methanoregula
Methanosarcina

PCL biofilm Roots Soil Water
VFTW VFTW FTW FTW VFTW VFTW FTW FTW
VFTW FTW () () (QING) (+) () (+) ()
77 1 15 9 0 0 20 2 0 0
1 0 33 4 0 0 4 3 0 0
0 0 11 5 4 0 0 0 1 0
83 15 7 9 20 6 12 13 2 4
9 0 5 0 0 0 8 0 0 0
18 2 8 1 4 11 15 51 0 0
2 0 13 4 0 0 1 1 0 0
39 0 10 14 0 0 7 115 0 0
12 0 0 0 0 0 6 0 0 0
79 115 43 19 2 1 1063 92 0 2
84 6 9 30 0 0 51 30 0 0
36 0 79 36 0 0 526 56 0 0
1 0 1 0 265 88 0 8 0 0
5 1 23 59 114 63 14 21 0 0
3 0 7 6 0 0 26 24 7589 7245
3 1 24 16 4 1 51 7 0 0
27 2 4 0 1 0 0 19 0 0
25 1 29 140 0 2 1 22 0 0
302 0 0 76 0 0 0 0 0 0
0 0 0 19 0 0 0 0 0 0
28 0 5 11 0 0 0 0 0 0
24 0 59 69 0 0 4 3 0 0
1 0 11 9 0 0 2 0 0 0
11 0 5 12 0 0 15 6 0 0
40 24 137 138 6 7 44 12 0 0
9 0 13 8 0 0 4 2 0 0
74 4 15 11 73 99 17 40 1 1
2 0 5 1 0 0 0 1 0 0
0 2 0 0 1 32 0 0 0 0
19 0 43 13 0 0 51 11 0 0
0 0 3 0 0 0 0 0 0 0
1 0 2 0 0 0 2 0 0 0



M ethanotrophic
bacteria

Alphaproteobacteria ~ Methylocystis 0 0 7 0 0 0 0 0 0
Methyl obacter 0 0 0 0 0 2 0 0 0
Methylocella 0 3 0 1 26 41 0 0 0
Gammaproteobacteria  Methylococcus 0 0 4 0 0 0 0 0 0
Methylosoma 0 0 0 0 9 3 0 0 0
M ethylotr ophic bacteria
) Methyl obacterium 0 0 1 1 5 8 0 0 0
Alphaproteobacteria
Methylobacillus 0 0 5 5 0 0 0 2 0
Hyphomicrobium 4 3 16 6 89 80 14 8 8
Betaproteobacteria Methylophilus 0 0 0 0 15 4 0 0 0
Methylibium 200 5 13 53 7 4 171 550 0

oo N O O

Shown are average bacterial and archaeal relatiwvedance of sample distributiom & 2) after
normalization to 10,000 reads per samf@yanobacteria are shown at the phylum level as class level was
unidentified.





